

Faculty Disclosure

In compliance with ACCME Guidelines, I hereby declare:

I do not have financial or other relationships with the manufacturer(s)of any commercial services(s) discussed in this educational activity.

Aaron Sciascia, MS, ATC, PES Coordinator: Shoulder Center of Kentucky

Let's Discuss

- Is this normal?
- Would you say he is impaired?

Orthopedics - Sports Medicine

Context is Key

- Was your initial opinion relative to your definition of "normal"?
- Did the additional information change your opinion?
- How you approach a patient is no different
 - Many pieces of information is required to provide an accurate diagnosis

Why the Rotator Cuff?

- 20-30% of population with rotator cuff disease have symptoms
 - Yamamoto et al JSES 2010
 Yamamoto et al JSES 2011
- Asymptomatic tears exist
 - Prevalence varies based on age • 10% ≤20 y/o to 60+% ≥80 y/o
 - Prevalence high enough that injury versus degeneration hard to distinguish
 - Teunis et al JSES 2014

Orthopedics - Sports Medicine

Question

• In patients with shoulder pain (P), is there evidence supporting making a diagnosis of a rotator cuff injury (O) from the patient history (I)?

Orthopedics - Sports Medicine

Subjective Information

Why is the patient in your office?

- Does the patient have:
 - -Anatomic injury
 - -Dysfunction
- Case Example
 - -52 y/o assembly line worker
 - C/O inability to repetitively hold arms in front of body when performing job

Why is this important?

- Current methods of making the diagnosis are not resulting in optimal outcomes
 - Using imaging as primary means for diagnosis
 - Thinking the injury is always directly related to the complaint
- In other words: the context you approach your evaluation greatly affects your treatment plan
 - Anatomical lesion versus functional limitation

Orthopedics - Sports Medicine

The Evidence

- Symptom duration does not correlate well with RC tear size or impairments (weakness, ROM, PROs)
 - Unruh et al JSES 2014
- · History items alone have low diagnostic value
 - Cadogan et al J Man Manip Ther 2013
- A cluster of symptoms plus age has more clinical value than symptoms alone
 - Litaker J Am Geriatr Soc 2000
 - Cadogan et al J Man Manip Ther 2013

Orthopedics - Sports Medicine

The Evidence

- Pain does not correlate with rotator cuff tear severity
 - 393 subjects with full-thickness atraumatic tears
 - Dunn et al (MOON Shoulder Group) JBJS (Am) 2014
- · But what does?
 - Race
 - Co-morbidities
 - Education Level

The Evidence

- Risk factors for sustaining a tear: Age, history of trauma, dominant arm
 - Under 49 y/o: history of trauma, dominant arm
 - Over 49 y/o: age, history of trauma, dominant arm
 - · Yamamoto et al JSES 2010
- Risk factors for having a rotator cuff tear when symptoms are present
 - + impingement sign (OR:10), weakness in ER (OR:3), dominant arm (OR:2)
 - Yamamoto et al JSES 2011

exington . Clinic

Orthopedics - Sports Medicine

Value of History

Cadogan et al J Man Manip Ther 2013

Clinical variables		
	+LR (95% CI)	-LR (95% CI)
Age >50 years SPADI (pain >48%) Traumatic onset Night pain	1.79 (1.07, 2.70) 1.30 (0.91, 1.66) 1.96 (1.31, 2.67) 1.59 (1.15, 2.00)	0.69 (0.43, 0.97) 0.64 (0.32, 1.12) 0.51 (0.27, 0.82) 0.43 (0.19, 0.84)

Van Kampen et al J Orthop Surg Res 2014

	LR (+)	LR (-)
Weakness	0.75	1,2
Night pain	1.1	0.58

Measuring Patient Perception

- Disease-specific instrument ideal for assessing outcomes specific to rotator cuff
 - WORC index
 - RCQOL measure
 - Longo et al KSSTA 2012
- Patient-Specific Functional Scale (PSFS)
 - Allows patient to write down the tasks that he or she struggles with
 - Stratford et al Physiother Can 1995

The	WC	ORC
posts	non had de son, planes untre the assessed of the conquirem you have experimented in the last words, or each your assesses with a latch?") How youch theory paint do your experiments in your distribute? Jan.	21 items5 domains
1	How smarth constant, negging pean do you expenience as your shouldes? ———————————————————————————————————	Physical symptomsSports/recreation
8.	How much would area do you enquelence in your shoulder?	– Work – Lifestyle
L	Here much stiffness or lack of range of motion do you experience in your shoulder?	- Emotions
5.	How much see you between by circlaing, grading or councing as your shouldes?	 Score 0-2100 (low to high disability)
	How much disconduct do you experience in the number of your neck because of your shoulder?	2100-patient total score/21 = %disability

\Box	\sim	\frown		ı
R	U	W	0	L

Question: With any prolonged activity how much pain or discomfort do you experience in your shoulder?

0 _______ 100
Severe Pain No pain at all

The authors recommend converting the raw scores (0 to 3,400; 0= worst score, 3,400 = best score) to a percentage score, i.e., presenting scores out of 100.

- 34 items
- 5 domains
 - Symptoms and Physical Complaints
 - Sports/recreation
 - Work-Related Concerns
 - Lifestyle Issues
 - Social and Emotional Issues

	PSF	25			
		0			
=		/B-			
Patient-specific activity sco	-				
0 1 2 3 4	5 6	7	8 9	10	
Unable to				Able to per	
perform activity				activity at the	
actiny					
				injury or pr	
(Date and Score)					
	Initial	1 week	2 weeks		
Activity Reach high shelf	3	3	5		
(Date and Score) Activity					
Activity Reach high shelf	3	3	5		
Activity 1. Reach high shelf 2. Pick up purse	3 6	3 5	5 7		
Activity Reach high shelf Reach purse Open doors	3 6	3 5	5 7		
Activity Reach high shelf Pick up purse Open doors 4.	3 6	3 5	5 7		
Activity 1. Reach high shelf 2. Pick up purse 3. Open doors 4.	3 6	3 5	5 7		

_									
R	Δ'	\cap	m	m	er	\mathbf{n}	at	10	۱r

- · Start exam with proper context
- History alone is limited in diagnosing a rotator cuff injury

Orthopedics - Sports Medicine

Recommendation

- · Items to consider
 - Age (especially ≥50 y/o)
 - Arm dominance
 - History of trauma
 - C/O weakness (especially ER)
 - Night pain
- Combine history with other exam components for best answer

Orthopedics - Sports Medicine

Question

 In patients with shoulder pain (P), is there evidence supporting making a diagnosis of a rotator cuff injury (O) from range of motion and manual muscle testing results (I)?

Range of Motion Assessments	
]exington	
Clinic Orthopedics - Sports Medicine	·
Mby Do Mo Acces DOMO	
Why Do We Assess ROM? • Motion is basic component of physical function	
Observation of limitation Try to decide what is "normal"	
Pain versus restrictionPain with active motion loss	
Contractile tissue involvement? Pain with passive motion loss	
Soft tissue involvement (contractile or non-contractile)? Restricted movement Chronic condition?	
gadington Cities Orthopedius - Sports Medicine	
Why Do We Assess ROM?	
If pain is the issue	
If pain is the issue When and where does it hurt?	
If pain is the issue When and where does it hurt? Does movement affect pain (quality and quantity)? If restriction is the issue	
If pain is the issue When and where does it hurt? Does movement affect pain (quality and quantity)? If restriction is the issue Where does the restriction begin? Is there a compensatory pattern?	

What Does the Literature Tell Us?

- Movement analysis by itself not helpful in determining which shoulder is symptomatic
 - Hickey et al Man Ther 2007
- · Instrumentation improves reliability of measurement
 - Van de Pol et al J Physio Ther 2010
- Patients over-estimate the amount of their own motion
 Rudiger et al JSES 2008

Orthopedics - Sports Medicine

What Else Does the Literature Tell Us?

- Specific to Rotator Cuff Diagnosis
 - Pain during motion not indicative of a rotator cuff injury
 - Itoi et al AJSM 2006
 - Tear size does not affect loss of motion
 - McCabe et al JOSPT 2005
 - Good agreement between clinicians when combination of complete history and selective tissue tension is used
 - Active arm movements
 - Hanchard et al JOSPT 2005

Combining the Literature with Experience

- ROM by itself not diagnostic
 - Should you continue to measure it?
 - YES!!! But why?
- Aids treatment decision making
- In most cases, postural anatomy is deficient which we know leads to......

Orthopedics - Sports Medicine

Decreased Arm Motion and Strength

- · Shoulder abduction ROM

 - Erect: 157.5° (± 10.8)
 Slouched: 133.9° (± 13.7)
- Abduction strength @ 90°
 - Erect: 10.4kg (± 4.5)
 - Slouched: 8.7kg (± 3.5)
- · Scapular upward rotation:
 - Erect: 43.1° (±7.5) Slouched: 37.9° (±6.5)
- Scapular posterior tilt
- Erect: 44.7° (<u>+</u>6.8)
- Slouched: 40.6° (±6.9)

 Kebaetse et al. Arch Phy Med Rehab
 1999

Orthopedics - Sports Medicine

Abnormal Posture

- Rotator cuff prevalence based on posture, age, and past pain
 - Ideal posture: 3%
 - Kyphotic-lordotic: 66%
 - Flat-back: 54%
 - Sway-back: 49%
 - · Yamamoto et al JSES 2015

What Should You Evaluate?

- · Arm Motion
 - Forward Elevation
 - Abduction
 - ER/IR @ 0°
 - ER/IR @ 90°
 - Other motions as dictated by patient needs and presentation
- · Scapular motion
 - Difficult to measure
 - Only upward rotation can be performed clinically at this time

Orthopedics - Sports Medicine

Functional IR? • Behind the back ROM - ADL specific motion • Poor to good reliability • Modified method excellent reliability - ICC=.95-was. .96-we - SEM=4.3mm/was. 2.6mm/was • Van der Dolder et al Man Ther 2014 Orthopesika - Sports Maskiche

Functional ranges • For ADLs • 120° forward elevation • 45° extension • 130° abduction • 115° cross body adduction • 60° ER (at 90°) • 100° IR (at side) Namdari et al JSES 2012

Instrumentation

- Eyes
 - Shown to have variable reliability (.26-.96)
 - Van de Pol et al J Physio Ther 2010
- Goniometer/Inclinometer
 - Individual SEM 2-5°, can vary up to 20°

Orthopedics - Sports Medicine

Recommendations

- Do not perform ROM by itself not diagnostic or predictive of injury
- Devices improve measurement reliability but practice is key for consistency
- ROM assessment is helpful in rotator cuff exam when combined with other exam findings

Manual Muscle Testing ton Orthopedics-Sports Medicine

Why Do We Perform MMT?

- · Designed for patients with paralytic conditions
 - Lovett and Martin JAMA 1916
 - Decided assessment could be useful in all populations
- Injury versus malalignment
 - Injury: inhibition from pain or derangement
 - Malalignment: altered position modifies load and stress creating pain, injury, or altered output

Number System Doesn't Equal Objective Value Grade Description Normal Complete ROM against gravity, max resistance 5 4 Good Complete ROM against gravity, mod resistance Fair+ Complete ROM against gravity, min resistance Complete ROM against gravity 3 Fair Some ROM against gravity 2+ Poor+ Initiates motion against gravity Poor Complete ROM w/ gravity eliminated Poor-Initiates motion w/ gravity eliminated Evidence of contraction w/ no joint motion Trace No contraction Orthopedics - Sports Medicine

What Grade Would You Give? Orthopsellor - Sports Medicine

What We Know About MMT

- Grade 3 (fair) is least subjective
 Sapega JBJS 1990
- Grade 4 cannot accurately determine impairment
 Dvir Clin Rehab 1997
- MMT with hands lower reliability compared to instrumentation

Hayes et al JSES 2002

	eliability ———		
 Measurement device 	Int	raclass correlation	
– MMT (grades 1-4, 4.5, 5)		coefficient (ρ)	95% CI
Hand Held DynamometerSpring ScaleMotion	Manual muscle test Elevation External rotation Internal rotation Lift-off	0.72 0.55 0.61 0.38	0.38-0.9 0.17-0.8 0.26-0.8 0.02-0.8
ElevationExternal RotationInternal Rotation	Dynamometry Elevation External rotation Internal rotation Lift-off	0.92 0.82 0.85 0.79	0.75-0.9 0.55-0.9 0.62-0.9 0.50-0.9
- Lift off - Hayes K et al., JSES 2002	Spring-scale dynamometer Elevation External rotation Internal rotation Adduction	0.96 0.75 0.88 0.90	0.84-1.0 0.40-0.9 0.68-0.9 0.72-0.9

Additional Thought

- If devices improve reliability of the measure, do you need to purchase a device?
 - You still must become proficient at using a device
 - Your clinical skills do not automatically improve because you now own expensive equipment
 - Unknown if devices improve diagnostic capability

Orthopedics - Sports Medicine

Manual Muscle Testing

- Force production at a specific muscle in isolation is not realistic
- EMG analysis of rotator cuff muscle function identified optimal positions
 - Maximal activation of target muscle with minimal activation of synergistic muscles
 - Best reliability and minimal pain during test

Rotator Cu	ff Manual Mu	uscle Tests
Full Can	ER at Side	Lift-Off
exinaton	Kelly et al AJSM 1996	
Clinic	Orthopedics – Sports Me	dicine

What Do These Tests Tell Us?

- Weakness during tests help determine muscle injury
 - Full can <grade 5 = supraspinatus
 - ER at side <grade 4+ = infraspinatus</p>
 - Lift-off <grade 3 = subscapularis</p>
 - Pain not a reliable predictor of injury
 - Itoi et al AJSM 2006

Orthopedics - Sports Medicine

What Do These Tests Tell Us?

- · Tear size and strength
 - Weakness >50% of non-involved arm in 10° shoulder abduction indicative of large or massive rotator cuff tear
 - Full thickness tears 20% larger strength loss compared to partial thickness tears
 - McCabe et al JOSPT 2005

Clinical Experience Tip

The "non-shoulder" shoulder examination

Looking for potential causes of shoulder pain

Orthopedics - Sports Medicine

Scapular Assessment

- Static position
- Dynamic motion 3-5 reps
 - "Yes/No"
 - Uhl et al Arthroscopy 25(11): 1240-1248, 2009
- Modifications
 - Up to 10 reps
- Add light 2-5 lb weight

Corrective Maneuvers

 Use maneuvers to show a component of dysfunction to help guide treatment (quality assessment)

]exington . Clinic

Orthopedics - Sports Medicine

Controversy

- Tests cannot differentially diagnose patients with and without shoulder pain
 - Wright et al BJSM 2013
- Scapular issues are "impairments" not pathology
 - Dyskinesis is not an injury or a diagnosis
 - Kibler et al BJSM 2013
- Scapular dyskinesis is a physical finding so there should be no value for making a diagnosis

Recommendations

- MMT grading system is not truly objective
- Rotator cuff strength testing can help diagnose rotator cuff injury using weakness as the outcome with larger tears having more weakness
- Scapular examination not diagnostic of rotator cuff injury but can assist in impairment detection

 Deficits found in MMT guide treatment options for impairment resolution

Orthopedics - Sports Medicine

Question

 In patients with shoulder pain (P), is there evidence supporting making a diagnosis of a rotator cuff injury (O) from special testing results (I)?

Orthopedics - Sports Medicine

Confirming Suspicions

What We Know

- · Over 120 clinical shoulder tests
- Current opinion: Lack of quality evidence to advocate using any one clinical shoulder test exclusively
 - There is no Lachman's for the shoulder

Orthopedics - Sports Medicine

Different Approaches

- · Only use the literature
 - Excellent work exists identifying clinical utility of most tests
 - If it's in print in must be true
- · Only use your preferences
 - Part of being a clinician is science but also art
 - Enters bias into the equation
- · Complementary approach

Orthopedics - Sports Medicine

Complementary Approach

- · Patient values
 - What are the complaints: anatomical, functional, both?
- Clinician experience
 - What have you seen and what have you used in the past?
- · Best available evidence
 - What does the literature tell you and how good is it (quality)?
- Haven't we heard this before?
 - Components of evidence-based medicine

Quick Definitions

- Sensitivity: proportion of patients with disorder who have a positive test
 - SnNout: high **sensitivity**, test **negative** = rule **out**
- Specificity: proportion of patients without disorder who have a negative test
 - SpPin: high specificity, test positive = rule in

Orthopedics - Sports Medicine

Quick Definitions

- + Likelihood Ratio: how much a positive test increases the probability of a disease being present
 - Sensitivity/1 Specificity
- Likelihood Ratio: how much a negative test decreases the probability of a disease being present
 - 1 Sensitivity/Specificity

Likeliho	od Ratio	Interpretation
"+"	"_"	
>10	<0.1	Large & often conclusive changes from pre-test to post-test probability
5 – 10	0.1 – 0.2	Moderate shifts in pre-test to post- test probability
2 – 5	0.5 – 0.2	Small but sometimes important changes in probability
1 – 2	0.5 – 1	Small and rarely important changes in probability
	Jaeschk	e et al JAMA 1994

2	2
_	_

Rule of thumb

- For LR+ of 2
 - pretest probability is increased by about 15%
- For LR+ of 5
 - pretest probability is increased by about 30%
- For LR+ of 10
 - pretest probability is increased by about 45%
- For LR- of 0.5
 - pretest probability is decreased by about 15%
- For LR- of 0.2
- pretest probability is decreased by about 30%
 For LR- of 0.1
- pretest probability is decreased by about 45%

Category	Number of Tests
Labral Injury	18
Anterior Instability	19
Posterior Instability	13
Multidirectional Instability	11
Scapular Dysfunction	7
AC Joint Injury	11
Biceps Injury	14
Impingement	12
Rotator Cuff Injury	18
Total	122
Sciascia et al JAT 2	012

Rotator Cuff Injury

- · What we know
 - At least 2 tests exist per muscle
 - Multiple muscles = various injuries
 - Combination of resistance tests and lag signs
 - Most common shoulder injury

Orthopedics - Sports Medicine

Controversies

- A variety of conditions: impingement, tendinopathy, PT-RCT, FT-RCT, massive RCT
- · Do positive tests indicate tear or "involvement"?
- Should you use a dynamic task, break test, or lag sign?
 - Dynamic task: impeded by pain not allowing accurate measurement
 - Break test: other larger muscles can override smaller cuff muscles
 - Lag signs: inability to hold arm in position

Orthopedics - Sports Medicine

Tests for Tears

- External Rotation Lag Sign
 - +LR: 7.2
- Internal Rotation Lag Sign
 - +LR: 5.6
- Dropping Sign+LR: 3.2

Hermans et al JAMA 2013

Tests for Disease

Resistance Tests

External Rotation Resistance

- Patte
- · Full Can
- Empty Can (Jobe)
- · Resisted Abduction
 - +LR 0.72-2.6

Orthopedics - Sports Medicine

Single Test Suggestions

Belly Off Sign Belly Press Myer et al BJSM 2013, Hermans et al JAMA 2013, Hege

Combination Suggestions

- · Supraspinatus Tendinopathy
 - >39y/o, painful arc, patient reported pop or click

 - 2 positive tests (+LR: 3.8)
 3 positive tests (+LR: 32.2)
 Chew et al Physiother Sing 2010
- · Rotator Cuff Tear
 - ≥65 y/o, external rotation weakness, night pain (+LR: 9.8)
 - Litaker et al J Am Geriatr Soc 2000
- Subscapularis Injury
 - Lift-off and/or resisted internal rotation (+LR: 3.13)
 - Naredo et al Ann Rheum Dis 2002

From Hegedus BJSM 2012

Possible Approach

- · Special testing is another tool in the toolbox
 - Special testing is often confirmatory of your clinical suspicion derived from the patient history
- Requirements for gaining useful information from special testing
 - Appreciation of anatomy and function
 - Familiarity with test and how to execute it
 - Matching up patient history with test results

Orthopedics - Sports Medicine

Recommendation

 Evidence and experience supports using resistance and lag signs to confirm suspicion of muscle tear.
 A cluster of symptoms and maneuvers appear to be most useful

- Hegedus et al BJSM 2012
- Myer et al BJSM 2013
- Cadogan et al J Man Manip Ther 2013

Hermans et al JAMA 2013

Orthopedics - Sports Medicine

Paintid Arc Abduction Paintid Arc Abduction Refe-Out MLM New Ages > 50 yrs Plaintid Arc Abduction Refe-Out MLM New Ages > 50 yrs Refe-Out MLM New Ages >

Wrap-Up

- History
 - Age

 - Arm involved
 - History of trauma
 - Self-reported weakness
- · Range of Motion
 - AROM/PROM to assist in tissue involvement
- Manual Muscle Testing
 - Full can
 - ER at side
 - Lift-off
- Special Testing
 - Lag Signs
 - Selected Resistance Tests

2	7
_	1
_	•