The Throwing Shoulder: Biomechanics; Injury Prevention and Treatment

Kevin W. Farmer, MD
Assistant Professor
University of FL Orthopaedic Surgery
Sports Medicine
Team Physician UF Athletic Association

Disclosure

In Compliance with ACCME guidelines, I hereby declare:

I do not have financial or other relationships with the manufacture(s) of any commerical services discussed in this educational activity.

Kevin W. Farmer, MD
Assistant Professor
Dept. of Orthopaedics
University of FL

Overview

- Introduction
- Phases of Throwing
- Physical Characteristics
- Specific Injuries

Overhead throwing is one of fastest human activities

Angular velocity of 7,000°/sec

Transfer of potential energy to kinetic energy of object

- Repetitive overhead activities
 - **■** Enormous stress on soft-tissues and bony structures of shoulder

- "Thrower's Paradox"
 - "Lax enough to allow excessive external rotation, but stable enough to prevent symptomatic subluxations"

"Overhead Activities" often refers to pitching/throwing in baseball

The phases of throwing are well studied and understood

Other sports have similar motions

Tennis serve

Volleyball

Javelin

Football

The Wind-Up

- **■** Coiling phase: potential energy
- Center of gravity is raised
- Minimal stress on shoulder

- Early Cocking
 - Arm Abducted to 90°

■ ER initiated

■ EMG shows early deltoid and later rotator cuff activation

- Late Cocking
 - Maximum ER of arm
 - Can reach 170°

■ Posterior translation of humeral head

- Late Cocking
 - High RTC activity
 - Early SS/IS/TM
 - **■** Late Subscap

■ Compressive forces up to 650 N

- Late Cocking
 - Maximum stress on anterior restraints

- Anterior shear forces approach 400 N, or as high as
 ½ Body Weight
- Pain = labral pathology > RCT or biceps

Acceleration

- Rapid IR up to 7,000°/sec
- Humeral head returns to neutral position, and capsule uncoils

Minimal load to glenohumeral joint

Deceleration

- Most violent phase
- From ball release to 0°
- Maximal posterior capsule stress
- **■** Posterior shear stresses of 400 N

Deceleration

Marked eccentric contraction of rotator cuff

Distraction forces equal to Body Weight

■ Pain=rotator cuff injury

Follow through

- Rebalancing of muscles
- **■** Posterior capsule still under stress

Entire cycle: Approx. 2 seconds

Range of Motion

- Increased ER, compensatory loss of IR (Wilk, AJSM 2008)
 - ER: +9°, IR -8.5° compared to non-throwing arm in pitchers
- Total Motion (ER to IR) often preserved (180°)

Wilk, JOSPT 2009

- Laxity
 - Increased laxity allows increased ROM

- Maybe acquired or congenital
 - Anterior structures stretch out over time?
- Not present in all throwers

- **Osseous Adaptations**
 - **■** Increased retroversion of humeral head in throwers

- **■** Retroversion greatest in younger athletes
 - **■** Remodeling with open growth plates

- Muscle Strength
 - **■** Decreased strength in ER

- Increased strength in IR
- Important that ER strength should be at least 65% of IR strength (Wilk, JOSPT 2009)
 - **Provides dynamic stabilization**

- Muscle Strength
 - Significantly stronger scapular protractors and elevators

Significantly stronger depressor muscles

■ Maintained ratio of elevators/depressors important (Wilk. JOSPT 2009)

- Posture and Scapular Postion
 - Scapula: protracted and anteriorly tilted at rest compared to nonthrowing arm

■ Anterior tilt increased with Abd/ER and with fatique

■ + anterior tilt → loss of IR

- Internal Impingement
 - Contact of articular surface of posterior RTC and greater tuberosity with posterior/superior glenoid and labrum
 - **■** Excessive anterior translation of humerus
 - tight posterior capsule/lax anterior restraints
 - **■** increased external rotation

Internal Impingement

Jobe Oper Tech 1996

Conway Orthop Clin 2001

- Internal Impingement
 - Articular sided rotator cuff tears (~80%)
 - **Posterior and SLAP (IIB)**
 - Humeral head cysts
 - **■** Rotator cuff insertion

- Internal Impingement
 - Insidious onset of pain
 - Increases during season
 - Pain posterior during late cocking
 - Anterior pain often
 - Increased ER most common finding on physical exam

Internal Impingement

- **■** Treatment
 - **■** Increase IR
 - **■** Posterior capsule stretching
 - Sleeper stretch
 - **■** Rotator Cuff Program
 - Scapular stabilization

Wilk JOSPT 2009

- Internal Impingement
 - Surgery last resort (~80% return to play)
 - **■** Debridement of RTC vs. Repair
 - Labral debridement vs. Repair
 - Anterior capsular plication?
 - **■** Posterior capsular release
 - Posterior band in IGHL

GIRD

■ Loss of > 25° of IR compared to contralateral arm

- Due to posterior capsular contracture
 - Repetitive shear/deceleration?

Tyler AJSM 2010

GIRD

Causes posterior-superior shift in contact point

■ Leads to increased ER

Burkart Arthroscopy 2003

GIRD

- **Increased ER**
 - **■** increases in shear and Peel-back forces
 - SLAP/posterior labral injury

Biceps В

Burkart Arthroscopy 2003

GIRD

- **■** Posterior capsular stretching
 - Sleeper stretch
 - ~90% successful Burkhart

GIRD

- Posterior capsular release as last resort
 - 70% return to pre-injury level
 - 100% if no other lesions

Yoneda 2006

- Rotator Cuff Tendinitis/Bursitis
 - Pain during late cocking or at deceleration

- Weakness noted 2° to pain
- **■** Early in season (poor conditioning) or late as an overuse syndrome

Rotator Cuff Tendinitis/Bursitis

- **■** Treatment:
 - NSAIDs
 - Rest
 - **■** Rotor Cuff program
 - **■** Corticosteroid injection

Rotator Cuff Tendinitis/Bursitis

- Surgery only after conservative trx. fails
 - Bursectomy
 - Subacromial (bone) decompression rarely needed
 - R/O underlying causes
 - MDI
 - GIRD

Rotator Cuff Tears

■ Pain in acceleration or deceleration

■ Full-thickness tears rare

Articular sided partial thickness tears more common

Rotator Cuff Tears Treatment

- **■** Full-thickness tears
 - Surgical repair in athletes

- Partial thickness
 - Rest / NSAIDs
 - Rotator Cuff program
 - **■** Posterior capsular stretching

Rotator Cuff Tears

- Partial thickness
 - Surgery only after failure of conservative trx
 - Debridement vs. repair
 - **Repair if > 50%**
 - Anterior capsule plication?
 - Posterior capsule release?

Rotator Cuff Tears

- Return to play unpredictable after surgery
 - Becoming more predictable with arthroscopic techniques
 - 10-80% return to play in pitchers

- SLAP tears
 - Tears of superior labrum at biceps anchor

- 10 "types"
 - Type 2B most common in throwers

- SLAP tears
 - "Peel back mechanism"

Burkhart Arthroscopy 2003

- SLAP tears
 - Vague pain in late cocking
 - Physical exam has poor predictive value

■ MRI/Arthrogram and arthroscopy are gold standard

- SLAP tears
 - **■** Treatment
 - Trial of NSAIDs / Rest
 - **■** Cuff/scapular stabilizers

- Surgical Repair if symptoms persist
- Outcomes good
 - ~75-87% return to preinjury activity

- Bennett's lesion
 - Bony overgrowth on posteroinferior glenoid
 - Insertion of posterior inferior glenohumeral ligament
 - Repetitive traction during throwing

- Bennett's lesion
 - Posterior pain during release

■ Most do not develop symptoms

■ Treated with posterior capsulotomy and burring down

Meister AJSM 1999

Conclusions

Throwing places enormous stress on the shoulder

- There are adaptive changes to the stress that may lead to pathologic processess
- It is important to understand the biomechanics of throwing to diagnose, treat, and ensure return to play
- Surgery should be reserved to players who have failed conservative treatment

Thank You

