Elbow Pain in the Throwing Athlete

Kevin W. Farmer, MD
Assistant Professor
Dept. of Orthopaedics
University of FL

Team Physician Florida Gators

Disclosure

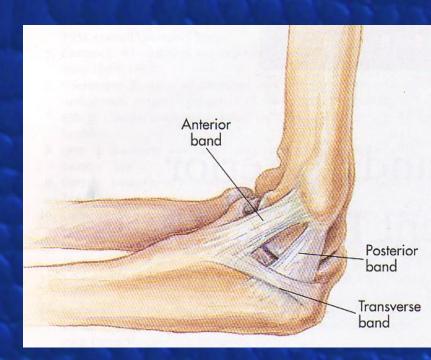
In Compliance with ACCME guidelines, I hereby declare:

I do not have financial or other relationships with the manufacture(s) of any commerical services discussed in this educational activity.

Kevin W. Farmer, MD
Assistant Professor
Dept. of Orthopaedics
University of FL

Outline

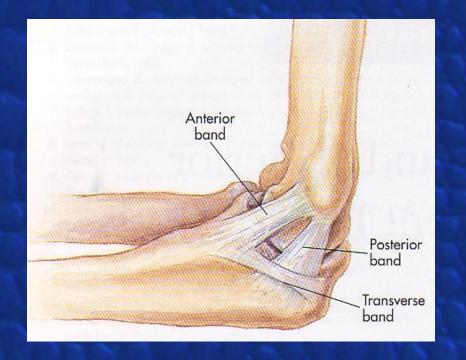
- Anatomy/Functional Anatomy
- Throwing Motion
- Common Pathologic Conditions
- Work-up
- Treatment/Outcomes



Elbow Stability

1° Stabilizers

- Ulnohumeral Articulation
 - 50% Elbow stability
 - 25% of pitchers s/p olecranon debridement require UCL reconstruction
 - Strain in UCL increases with >3mm posteromedial olecranon resection
- UCL
 - Valgus Stress
- LUCL
 - Varus Stress

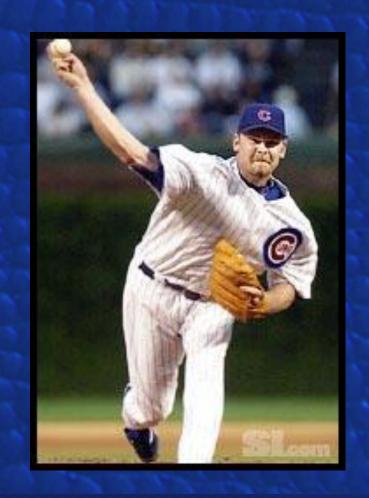


Elbow Stability

- 2° Valgus Stabilizers
 - Radiocapitellar Articulation
 - FCU
 - 1° dynamic stabilizer
 - FDS
 - 2° dynamic stabilizer

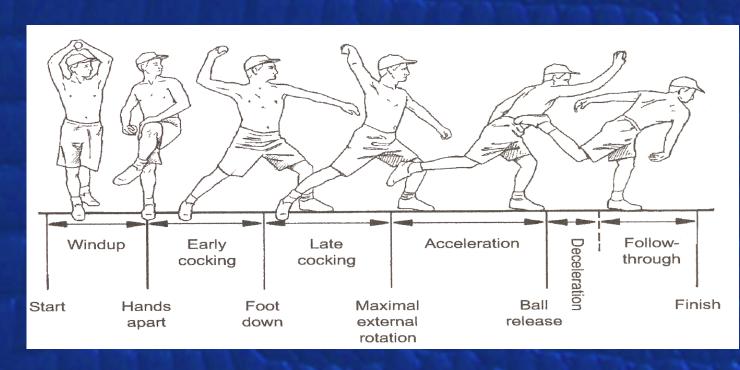
Overhead Throwing

- Throwing motion is similar across sports
 - Baseball pitch, tennis serve, javelin throw, football pass, volleyball spike
- Rapid forceful extension of the elbow
- Valgus stress and pronation of the supinated forearm



Effects of Throwing on Elbow

- Angular velocity reaches 3,000°/sec as elbow extends from 110°-20° flexion
- 64N/m valgus torque at elbow
 - UCL tensile strength: 33 N/m
- 500 N compressive force on radiocapitellar joint
- Majority of injuries secondary to repetitive overload rather than acute trauma

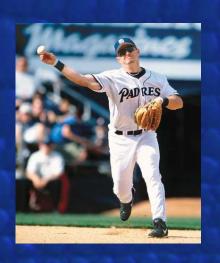


Stages of Overhead Throwing

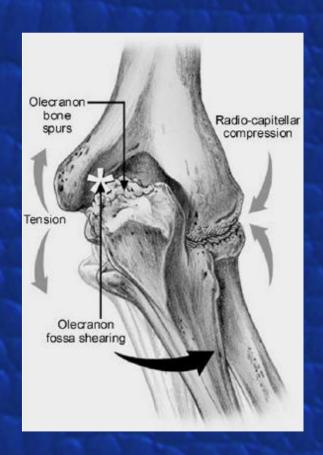
- Baseball Pitch
 - Best Studied
 - Divided into 5 stages

Stage IV: Acceleration

- Rapid acceleration of the UE
- Large forward-directed force on the extremity
 - Results:
 - IR & adduction humerus
 - Rapid elbow extension
 - Large valgus stress across elbow
- Most injuries occur in this phase; large stress/load across medial elbow structures



Stage V: Deceleration/Follow Through


- Dissipation of all kinetic energy
- Ends with full extension elbow
 - Shear stress in posterior compartment
- Rapid forceful decel of the UE
 - rate of 500,000°/ sec

Biomechanics of Throwing

- Net effect:
 - Tensile Stress Medially
 - Shear Stress Posteriorly
 - Compression- Laterally
- Together → Valgus Extension Overload Syndrome

Differential Diagnosis

Medial

UCL

Ulnar neuritis

Medial epicondylitis

Flexor pronator tendinosis/rupture

Posterior

Olecranon osteophytes

Loose bodies

Olecranon stress fractures

Lateral

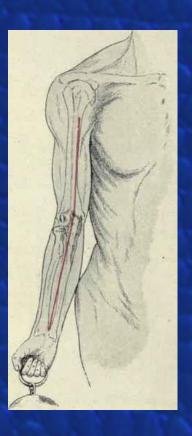
OCD of the capitellum

Radiocapitellar plica

History

- Acuity
 - Acute vs Chronic
- Age
 - Skeletal Maturity
- Location of Pain
 - Elbow is geographic

History


- Preceeding Events
 - changes in training regimen
 - number pitches/events
- Accuracy, velocity, stamina, strength
- Phase of throwing
- Associated Neurovascular Complaints
 - Paresthsia
 - Hand clumsiness
 - Cold intolerence

Inspection

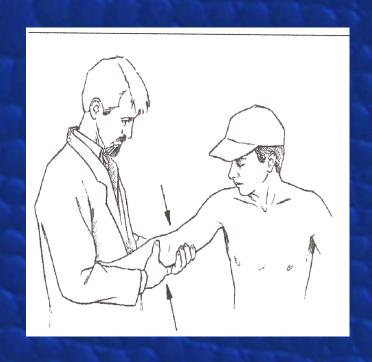
- Resting position
 - Effusion- elbow flexed 70° 80°
- Carrying angle
 - May be larger (adaptive not necc pathologic)
 - Professional throwers (valgus angles > 15 °)
- Ecchymosis

ROM

- AROM/PROM
 - Normal: F/E 0 -140° P/S 80-90°
 - Crepitus, pain, mechanical sx (chondral lesion/loose body)
- **Endpoints**
 - Hard in extension (osteophytes)
- Flexion contracture
 - May or May not be pathologic (50% professional pitchers + flex contracture)

Palpation

- Geographic- tender over pathology
- Bony landmarks
 - Fx, Stress Fx, Insertional tendinitis
- Soft tissues
 - Biceps/Triceps, Extensor Mass, Flexor-Pronator Mass
 - Be alert to possibility deeper pathology/instability
- Neurovascular structures
 - Ulnar Nerve
 - Tinels
 - Subluxation



- Strength
 - Compare to unaffected extremity
- Stability
 - Medial Instability
 - Valgus stress test
 - Milking maneuver
 - Lateral Instability
 - Uncommon in throwers
 - Valgus Extension Overload Test
 - Posterior medial osteophytes

Imaging

- Plain Radiographs
 - AP, Lateral, 2 Oblique Views
 - Osteophytes, calcifications (UCL), OCD, loose bodies
 - Stress Radiographs
 - Fallen out favor
- CT Scan/Bone Scan:
 - olecranon stress fx
- MRI
 - +/- Arthrogram

Differential Diagnosis

Medial

UCL

Ulnar neuritis

Medial epicondylitis

Flexor pronator tendinosis/rupture

Posterior

Olecranon osteophytes

Loose bodies

Olecranon stress fractures

Lateral

OCD of the capitellum

Differential Diagnosis

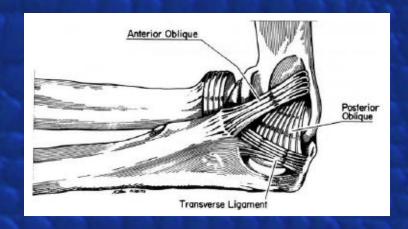
Medial

UCL

Ulnar neuritis

Medial epicondylitis/ apophysitis

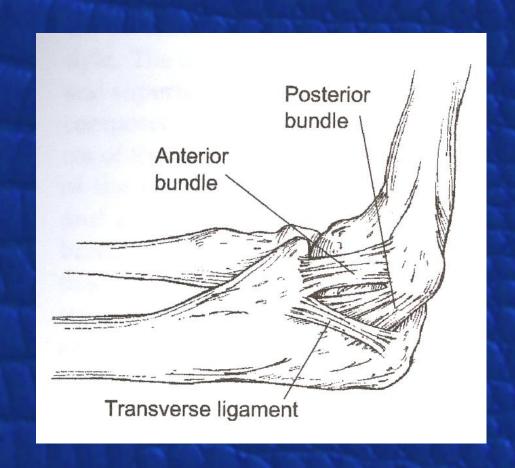
Flexor pronator tendinosis/rupture



UCL Injuries

- Valgus Stability of Elbow
 - 1° Stabilizer
 - Ulnar collateral ligament
 - 2°
 - Radio-capitellar joint
 - Flexor-Pronator Mass
 - FCU>FDS>PT

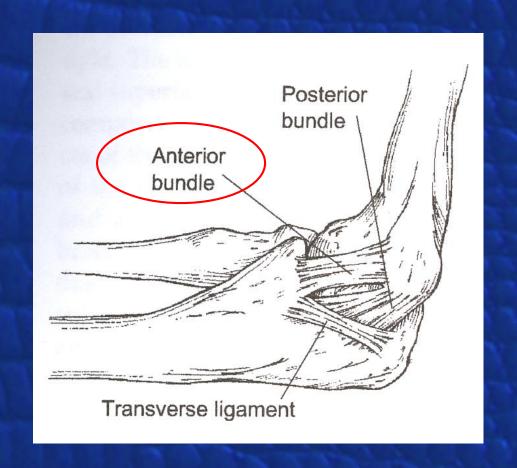
- Mid-range of motion from 20-120°
 - Unlocked ulno-humeral joint



Ulnar Collateral Ligament

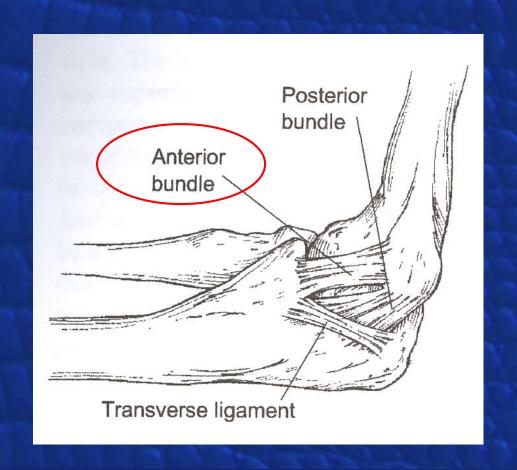
3 Bundles

- Anterior Bundle
 - Anterior Oblique Ligament
 - Inf Med Epi- Sublime Tub
- Posterior Bundle
 - Posterior Oblique Ligament
 - Inf Med Epi- Sigmoid Notch/post coronoid
- Transverse Ligament
 - Olecranon-Coronoid



Ulnar Collateral Ligament

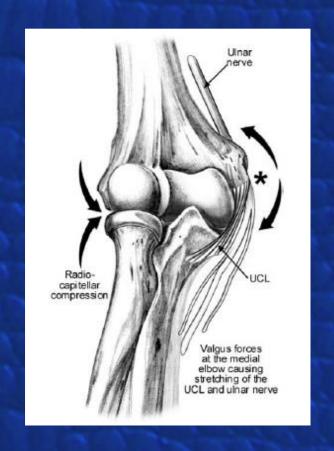
- 3 Bundles
 - Anterior Bundle
 - 2 Bands
 - Anterior Band
 - Posterior Band



Ulnar Collateral Ligament

- 3 Bundles
 - Anterior Bundle
 - 2 Bands
 - Anterior Band
 - 1° stabilizer @ lower flexion angles (<90)
 - Posterior Band
 - 1° stabilizer @ higher flexion angles (>90)

UCL Injury: Pathophysiology


Throwing Motion Generates:

Large Valgus & Extension Forces

Tensile Stress along Medial Structures

Repetitive Tensile Stresses- Leads to microtrauma to UCL

May lead to UCL attenuation or failure

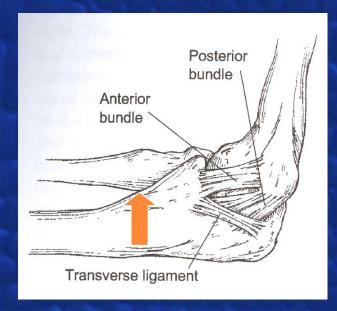
UCL Injury: Presentation

- Soreness along inner elbow during and after throwing
- Occasionally report episode of giving way or sudden severe pain ± popping sensation
- Pain
 - acceleration
 - ball release
 - point of impact in hitting the ball

UCL Injury: Presentation

- Loss of pitch velocity/ control
- +/- Ulnar nerve symptoms

 Catching or locking of the elbow if loose bodies are present



UCL Injury: Physical Exam

- Point tenderness 2 cm distal to medial epicondyle
- Laxity/Pain with valgus stress
- Absence of pain with resisted wrist flexion (epicondylitis)
- Ecchymosis in acute injury

UCL Injury: Physical Exam

- Valgus Stress Test
 - Classically described with elbow flexed 20-30°
 - Moving Valgus Stress Test
 - supine, with humerus maximally ER
 - Valgus stress throughout flexion/extension
 - 100% sensitive/75% specific

UCL Injury: Physical Exam

- **Milking Maneuver**
 - Shoulder abd 90°,
 Elbow flex 90°
 - Examiner grabs thumb; applies valgus stress
 - Valgus stress on elbow flexed >90°
 - Pain is positive finding
 - Often at sublime tubercle



UCL Injury: Imaging

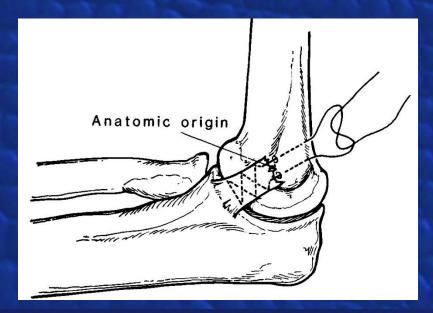
- X-rays
 - Calcification
 - Avulsion
- **Stress Xrays**
 - Used less frequently
 - > 3mm opening positive
 - Increased opening common in throwers
- MRI
 - +/- Arthrogram is the study of choice

Non-Operative Rx

- Indications
 - Non-throwing athlete
 - Non-throwing arm
 - Low demand patient
 - Partial Tears
- Rehab
 - 2-6 wks "Active Rest"
 - Brace (no valgus stress)
 - Rest, Ice, NSAIDs, Motion
 - Functional Exercises/Plyometrics
 - Flexor pronator strengthening
 - Interval throwing program

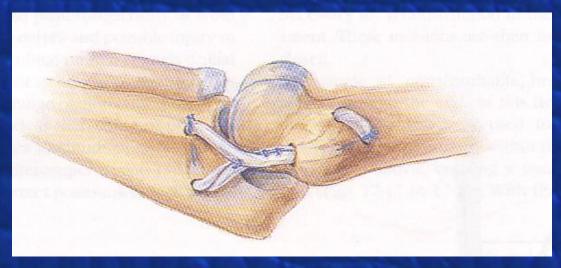
Operative Rx

- Indications
 - Acute rupture
 - Complete tear thrower
 - Partial tears that failed Rehab
 - Symptomatic tears in non-thrower, that failed Rehab
- Technique
 - Repair vs Reconstruction?



UCL Repair:

- Historically was the mainstay of Rx
- Several comparative studies demonstrated superior results w/ reconstruction
- Currently Limited Indications for Repair:
 - Acute proximal avulsions
 - Pediatric population (Savoie)
 - Good quality ligament

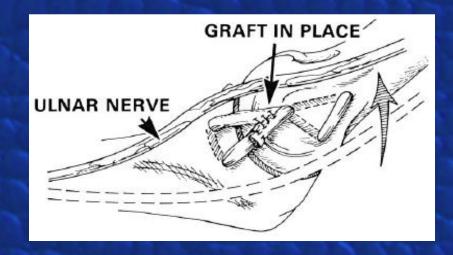


UCL Reconstruction:

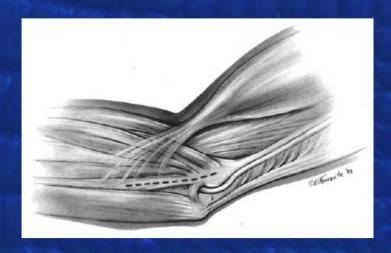
- Rx of Choice:
 - Reconstruction of the Anterior Bundle of the UCL w/ free tendon graft
 - Multiple Grafts Choices
 - Palmaris Longus
 - Contra-lateral?
 - Hamstring
 - Plantaris
 - 4th Toe Extensor
 - Allograft

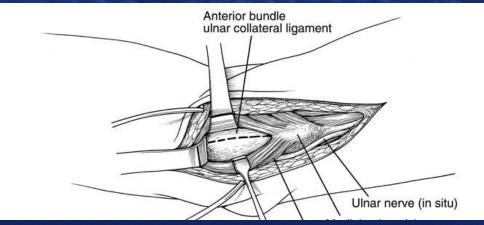
- UCL Reconstruction: Historical Perspective
 - 1986, Jobe et al. 1st to report results of reconstructive technique
 - "Tommy John" Procedure
 - Prior to this, UCL tear in a throwing athlete was a career ending injury

- Multiple Reconstruction Techniques
 - Classic "Tommy John"
 - Modified "Tommy John"
 - Docking Procedure
 - Interference Screws
 - Hybrid Reconstruction
 - Bone Anchor Reconstruction

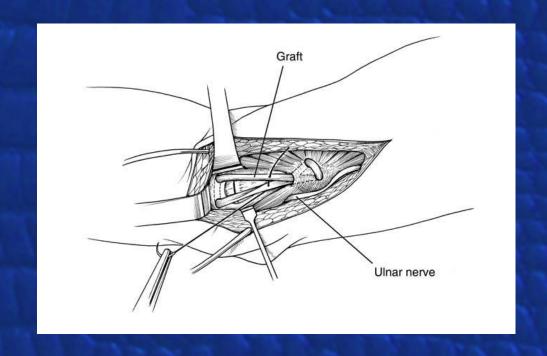


- UCL Reconstruction: Classic "Tommy John"
 - Extensive medial exposure
 - Transected and reflected flexor pronator mass
 - Free tendon graft recon, w/ bone tunnels through the posterior humeral cortex
 - Submuscular ulnar nerve transposition
- Excellent exposure, at expense significant morbidity associated with nerve transpostion and muscle detachment

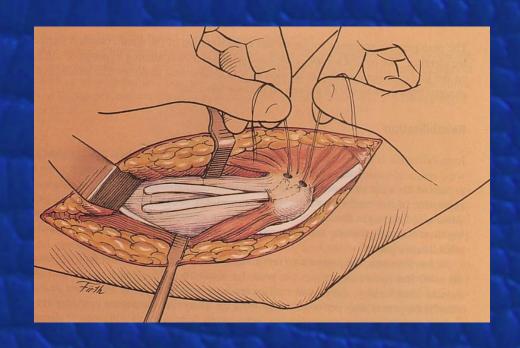




- UCL Reconstruction: **Modifications**
 - Modified "Tommy John"
 - Muscle-splitting approach vs. elevation of flexorpronator mass without detachment
 - Ulnar nerve transposition uncommon



- UCL Reconstruction: Modifications
 - Modified "Tommy John"
 - Bone tunnel in Ulna
 - Anteriorly directed converging tunnels in medial epicondyle

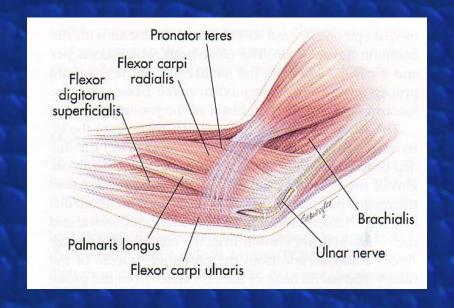


- UCL Reconstruction: Modifications
 - Docking Procedure
 - Two Drill Holes in Ulna
 - One drill hole in Humerus (blind end humeral tunnel)
 - Less bone tunnels

- UCL Reconstruction: Results
 - Systematic Review (AJSM 2008 Vitale et al.)
 - 8 (Level III) retro, cohort studies
 - Athletes underwent recon w/ min 1 yr
 f/u
 - Muscle splitting > flexor takedown
 - 87% vs. 70% excellent results
 - 7% vs. 23% complications
 - 6% vs 20% ulnar neuropathy
 - Docking procedure > figure-8
 - 90-95% versus 76% excellent outcomes
 - 8% vs. 4% ulnar neuropathy

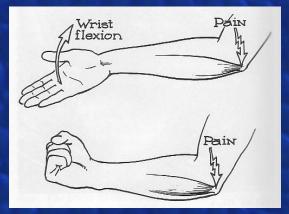
No transposition > transposition 89% versus 75% excellent outcomes 6% versus 14% complications 2 fold decrease in neuropathy

• UCL Reconstruction: Results



Flexor-Pronator Tendinosis/ Medial Epicondylitis

- Common flexor-pronator tendon at medial epicondyle
- Dynamic stabilizers to valgus stress in throwing elbow
- Wide specturm of injuries
 - Mild overuse to acute tears



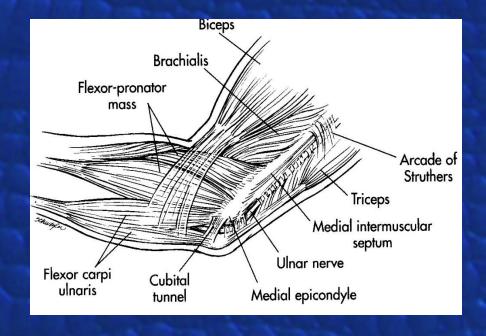
Flexor-Pronator Tendinosis/ **Medial Epicondylitis**

- Presentation
 - Insidious onset of medial elbow pain
 - Late cocking/acceleration
- Exam
 - TTP medial epi, over muscle distal/anterior
 - Pain with wrist flexion/pronation
 - No pain w/ valgus stress

** Concomitant valgus instability, may be underlying cause of sx & must be addressed at time of Rx

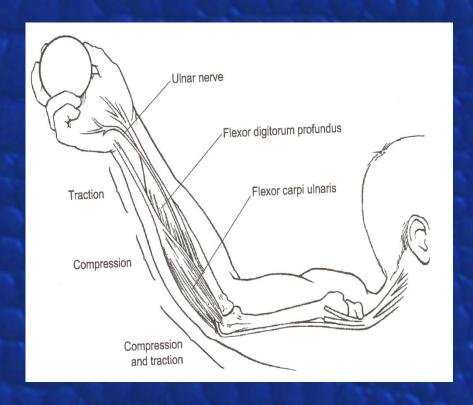
Flexor-Pronator Tendinosis/ **Medial Epicondyliti**

- Treatment
 - Non-Op
 - Main stay of Rx (90% success)
 - Phase I Rest, NSAIDS, +/- Injection
 - Phase II- Stretching, pain free strengthening, counterforce brace
 - Phase III Interval Throwing program, mechanics
 - Cortisone? PRP?
 - Operative Debridement/Repair
 - Refractory sx, muscle tears
 - 86-97% Good/Excellent Results in athletes (Jobe 1991, Morrey 1995)



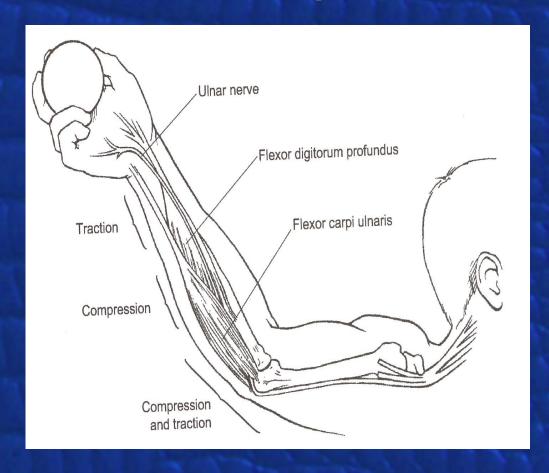
Ulnar Neuropathy

- Ulnar Nerve Sx Common
 - 40% of athletes w/ valgus instability develop ulnar neuritis
 - 60% of throwers w/ medial epicondylitis have ulnar nerve sx
- Susceptible to injury
 - Tight path it follows
 - Subcutaneous location
 - Considerable excursion required



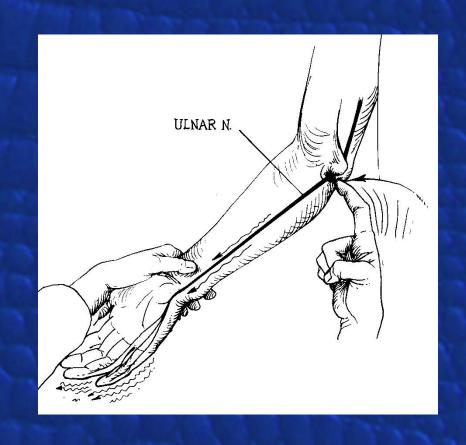
Ulnar Neuropathy

- Ulnar Nerve Irritation:
 - Traction-
 - Valgus Stress
 - Compression
 - Adhesions
 - Osteophytes
 - Muscle hypertrophy
 - Inflamed UCL (floor cubital tunnel)
 - Friction
 - Subluxation



Exacerbation of Ulnar Nerve Compression w/ Throwing

- Elbow flexion, wrist extension and shoulder abduction → 6x increase in intraneural pressure compared to resting level
- Made worse by chronic changes of valgus overload
- Prolonged and repeated pressure elevations lead to nerve fibrosis and ischemia



Evaluation of Ulnar Neuropathy

- Elbow pain w/ radiation down medial aspect of forearm into hand
- Clumsiness, heaviness, paresthesias, loss control
- Painful snapping w/ recurrent subluxations
- + Tinels, Flexion Test

** R/O Concomitant UCL Instability/ Flexor Tendinosis

Treatment of Isolated Ulnar Neuropathy

Nonoperative

Operative

Rest, ice, NSAIDs

Brief immobilization/Night splints

Injections not recommended

85% Success Rate

Decompression*

Medial epicondylectomy*

Subcutaneous vs Submuscular Transposition

* Poor results in throwers

Operative Management Ulnar Neuropathy

- Submuscular Transposition
 - Protects from trauma (Contact Athletes)
 - Longer rehab secondary to healing of flexorpronator origin
- Subcutaneous Transposition
 - Minimizes disruption of flexor-pronator musculature (Throwers)
 - More vulnerable to direct trauma
- Improvement depends on stage of symptoms
- 4-6 months to return to full activity

Isolated Ulnar Neuropathy: Op Results

- Del Pizzo
 - 60% return to play with submuscluar
 - Am J Sports Med 1977
- Rettig and Ebben
 - 95% return to play after subcutaneous transfer
 - Am J Sports Med 1993
- Andrews
 - 7 of 8 pro players returned after subcutaneous transposition
 - Am J Sports Med 1995

Current Recs: subcut ulnar nerve transposition in throwers

Medial

UCL

Ulnar neuritis

Medial epicondylitis

Flexor pronator tendinosis/rupture

Posterior

Olecranon osteophytes

Loose bodies

Olecranon stress fractures

Lateral

OCD of the capitellum

Posterior

Olecranon osteophytes

Loose bodies

Olecranon stress fractures

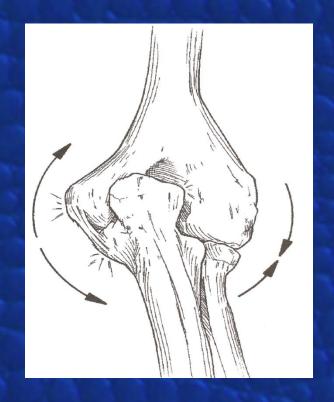
Posterior

Olecranon osteophytes

Loose bodies

Olecranon stress fractures

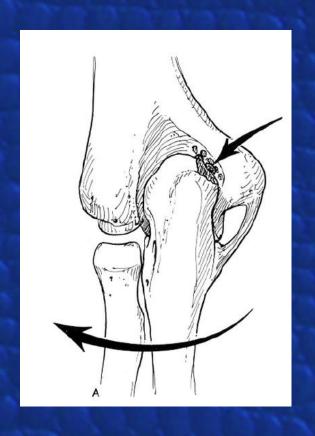
Posterior Impingement



Posterior Impingement

- Cause: Valgus Extension Overload
 - Repetitive combo of hyperextension, valgus & supination
 - Causes abutment of medial olecranon against fossa

- Result: Posterior Impingement
 - Synovitis, osteophyte and/or loose body formation in the posteromedial elbow of throwers


Posterior Impingement

Evaluation

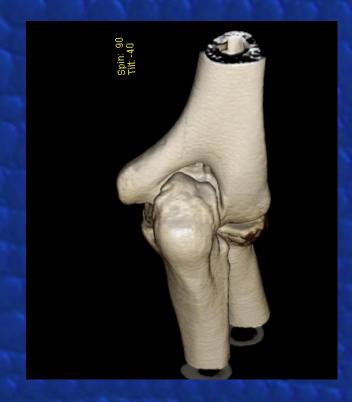
- Posterior pain, effusion, locking, crepitus, loss of extension
- TTP posteromedially, pain forced extension
- Xrays- osteophytes/loose bodies
- MRI- most sensitive test
- Must r/o/address medial instability

Initial Rx: Conservative

- RICE
- NSAIDS/ Cortisone
- PT, Interval Throwing

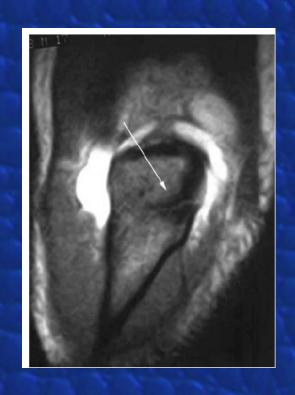
Posterior Impingement

- Operative Treatment
 - Arthroscopic Debridement
 - Debridement of olecranon osteophytes
 - Removal loose bodies
 - Chondroplasty
 - Must address concomitant instability if present
 - Avoid excessive osteophyte removal; overzealous removal may expose UCL to increased stresses



Results

- Andrews et al. 1995
 - 56 pro players
 - posterior osteophyte excision +/- UCL or ulnar nerve transpostion
 - 70% returned to play at 24 months
 - 41% required re operation for repeat debridement
- Reddy et al. 2000
 - 187 patients with elbow arthroscopy
 - 104 for posterior impingement
 - 92% good to excellent results at avg 42 months
 - 85% Baseball players RTP
- Current Recs- Arthroscopic debridement +/- UCL stabilization procedure, may improve sx but caution pt, may require additional procedures



Olecranon Stress Fractures

- Repetitive microtrauma by olecranon impingement or excessive triceps tensile stress
- Posterior elbow pain
- TTP over olecranon
- MRI, CT diagnostic

Olecranon Stress Fractures

- Treatment
 - Initial treatment w/ rest
 - May require ORIF in competitive thrower w/ 6.5 or 7.3 mm cannulated screw

Medial

UCL

Ulnar neuritis

Medial epicondylitis

Flexor pronator tendinosis/rupture

Posterior

Olecranon osteophytes

Loose bodies

Olecranon stress fractures

Lateral

OCD of the capitellum

Radiocapitellar plica

Lateral

OCD of the capitellum

Radiocapitellar plica

Osteochondritis Dissecans of the **Capitellum**

• OCD

 injury to subchondral bone that results in loss of structural support for cartilage

- Etiology
 - Unclear, repetitive microtrauma

Osteochondritis Dissecans of the Capitellum

Presentation

- Insidious onset, poorly localized lateral pain
- Worse w/ activity
- +/- mechanical sx
- May experience loss extension

Imaging

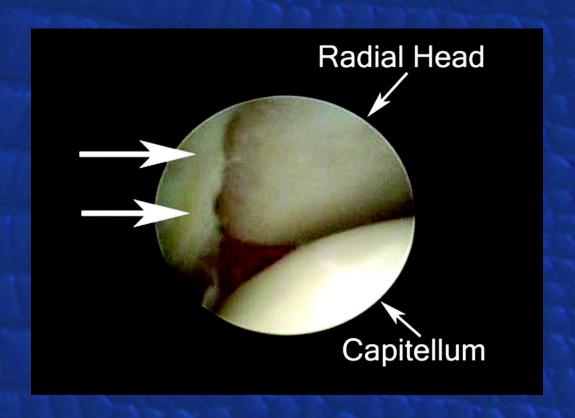
- Xrays
 - Radiolucency lesion
- MRI

Osteochondritis Dissecans of the Capitellum

- Treatment
 - Still evolving, no consensus
 - Natural hx not understood
 - Lesion progression
- Conservative Rx
 - Stable lesions, younger pts
 - Activity modification, Rest
- Operative Rx (Arthroscopy)
 - Unstable lesions, Loose bodies
 - Debridement +/- abrasion chondroplasty
 - OATS

Osteochondritis Dissecans of the Capitellum

- Panner's Disease
 - Self-limited osteochondrosis of capitellum
 - Children < 10
 - Resolves with rest



Radiocapitellar plica

- Tenderness to palpation
- Pain with flexion-extension of pronated forearm

Summary

- Overhead throwing- Large valgus and extension moments
- Medial tensile, lateral compression and posterior shear
- Common pathologic mechanism for elbow conditions
- Many of the pathologic conditions in throwers are related to elbow instability
- Dx and treating elbow instability, key for successful outcomes; regardless of presenting condition

