The Throwing Shoulder: Biomechanics; Injury Prevention and Treatment

Kevin W. Farmer, MD
Assistant Professor
University of FL Orthopaedic Surgery
Sports Medicine
Team Physician UF Athletic Association
Disclosure

In Compliance with ACCME guidelines, I hereby declare:

I do not have financial or other relationships with the manufacture(s) of any commercial services discussed in this educational activity.

Kevin W. Farmer, MD
Assistant Professor
Dept. of Orthopaedics
University of FL
Overview

- Introduction
- Phases of Throwing
- Physical Characteristics
- Specific Injuries
Introduction

- Overhead throwing is one of the fastest human activities
- Angular velocity of 7,000°/sec
- Transfer of potential energy to kinetic energy of object
Introduction

- Repetitive overhead activities
 - Enormous stress on soft-tissues and bony structures of shoulder

- "Thrower’s Paradox"
 - "Lax enough to allow excessive external rotation, but stable enough to prevent symptomatic subluxations"
Introduction

- “Overhead Activities” often refers to pitching/throwing in baseball

- The phases of throwing are well studied and understood

- Other sports have similar motions
Introduction

- Tennis serve
Introduction

- Volleyball
Introduction

- Javelin
Introduction

- Football
Phases of Throwing
Phases of Throwing

- **The Wind-Up**
 - Coiling phase: potential energy
 - Center of gravity is raised
 - Minimal stress on shoulder
Phases of Throwing

- **Early Cocking**
 - Arm Abducted to 90°
 - ER initiated
 - EMG shows early deltoid and later rotator cuff activation
Phases of Throwing

- Late Cocking
 - Maximum ER of arm
 - Can reach 170°
 - Posterior translation of humeral head
Phases of Throwing

- Late Cocking
 - High RTC activity
 - Early SS/IS/TM
 - Late Subscap
 - Compressive forces up to 650 N
Phases of Throwing

- Late Cocking
 - Maximum stress on anterior restraints
 - Anterior shear forces approach 400 N, or as high as ½ Body Weight
 - Pain = labral pathology > RCT or biceps
Phases of Throwing

- Acceleration
 - Rapid IR up to 7,000°/sec
 - Humeral head returns to neutral position, and capsule uncoils
 - Minimal load to glenohumeral joint
Phases of Throwing

- **Deceleration**
 - Most violent phase
 - From ball release to 0°
 - Maximal posterior capsule stress
 - Posterior shear stresses of 400 N
Phases of Throwing

■ Deceleration
 ■ Marked eccentric contraction of rotator cuff
 ■ Distraction forces equal to Body Weight
 ■ Pain=rotator cuff injury
Phases of Throwing

- Follow through
 - Rebalancing of muscles
 - Posterior capsule still under stress

- Entire cycle: Approx. 2 seconds
Physical Characteristics
Physical Characteristics

- **Range of Motion**
 - Increased ER, compensatory loss of IR \((\text{Wilk, AJSM 2008}) \)
 - ER: +9°, IR -8.5° compared to non-throwing arm in pitchers
 - Total Motion (ER to IR) often preserved (180°)

Wilk, JOSPT 2009
Physical Characteristics

- Laxity
 - Increased laxity allows increased ROM
 - Maybe acquired or congenital
 - Anterior structures stretch out over time?
 - Not present in all throwers
Physical Characteristics

- **Osseous Adaptations**
 - Increased retroversion of humeral head in throwers
 - Retroversion greatest in younger athletes
 - Remodeling with open growth plates
Physical Characteristics

- **Muscle Strength**
 - Decreased strength in ER
 - Increased strength in IR
 - Important that ER strength should be at least 65% of IR strength (Wilk, JOSPT 2009)
 - Provides dynamic stabilization
Physical Characteristics

■ Muscle Strength
 ■ Significantly stronger scapular protractors and elevators
 ■ Significantly stronger depressor muscles
 ■ Maintained ratio of elevators/depressors important
 (Wilk. JOSPT 2009)
Physical Characteristics

- **Posture and Scapular Position**
 - Scapula: protracted and anteriorly tilted at rest compared to non-throwing arm
 - Anterior tilt increased with Abd/ER and with fatigue
 - + anterior tilt \Rightarrow loss of IR
Pathologic Conditions
Pathologic Conditions

- Internal Impingement
 - Contact of articular surface of posterior RTC and greater tuberosity with posterior/superior glenoid and labrum

- Excessive anterior translation of humerus
 - tight posterior capsule/lax anterior restraints
 - increased external rotation
Pathologic Conditions

- Internal Impingement

Jobe Oper Tech 1996

Conway Orthop Clin 2001
Pathologic Conditions

- Internal Impingement
 - Articular sided rotator cuff tears (~80%)
 - Posterior and SLAP (IIB)
 - Humeral head cysts
 - Rotator cuff insertion
Pathologic Conditions

- Internal Impingement
 - Insidious onset of pain
 - Increases during season
 - Pain posterior during late cocking
 - Anterior pain often
 - Increased ER most common finding on physical exam
Pathologic Conditions

- **Internal Impingement**
 - **Treatment**
 - Increase IR
 - Posterior capsule stretching
 - Sleeper stretch
 - Rotator Cuff Program
 - Scapular stabilization

Wilk JOSPT 2009
Pathologic Conditions

- **Internal Impingement**
 - Surgery last resort (~80% return to play)
 - Debridement of RTC vs. Repair
 - Labral debridement vs. Repair
 - Anterior capsular plication?
 - Posterior capsular release
 - Posterior band in IGHL
Pathologic Conditions

- **GIRD**
 - Loss of > 25° of IR compared to contralateral arm
 - Due to posterior capsular contracture
 - Repetitive shear/deceleration?

 [Image: Tyler AJSM 2010]
Pathologic Conditions

- GIRD
 - Causes posterior-superior shift in contact point
 - Leads to increased ER

Burkart Arthroscopy 2003
Pathologic Conditions

- **GIRD**

 - Increased ER
 - increases in shear and Peel-back forces

 - SLAP/posterior labral injury

Burkart Arthroscopy 2003
Pathologic Conditions

- GIRD
 - Posterior capsular stretching
 - Sleeper stretch
 - ~90% successful Burkhart
Pathologic Conditions

- **GIRD**
 - Posterior capsular release as last resort
 - 70% return to pre-injury level
 - 100% if no other lesions

Yoneda 2006
Pathologic Conditions

- Rotator Cuff Tendinitis/Bursitis
 - Pain during late cocking or at deceleration
 - Weakness noted 2° to pain
 - Early in season (poor conditioning) or late as an overuse syndrome
Pathologic Conditions

- **Rotator Cuff Tendinitis/Bursitis**

 - **Treatment:**
 - NSAIDs
 - Rest
 - Rotor Cuff program
 - Corticosteroid injection
Pathologic Conditions

- **Rotator Cuff Tendinitis/Bursitis**
 - Surgery only after conservative trx. fails
 - Bursectomy
 - Subacromial (bone) decompression rarely needed
 - R/O underlying causes
 - MDI
 - GIRD
Pathologic Conditions

- Rotator Cuff Tears
 - Pain in acceleration or deceleration
 - Full-thickness tears rare
 - Articular sided partial thickness tears more common
Pathologic Conditions

- Rotator Cuff Tears Treatment
 - Full-thickness tears
 - Surgical repair in athletes
 - Partial thickness
 - Rest / NSAIDs
 - Rotator Cuff program
 - Posterior capsular stretching
Pathologic Conditions

- Rotator Cuff Tears
 - Partial thickness
 - Surgery only after failure of conservative trx
 - Debridement vs. repair
 - Repair if > 50%
 - Anterior capsule plication?
 - Posterior capsule release?
Pathologic Conditions

- Rotator Cuff Tears
 - Return to play unpredictable after surgery
 - Becoming more predictable with arthroscopic techniques
 - 10-80% return to play in pitchers
SPAP tears

- Tears of superior labrum at biceps anchor

- 10 “types”
 - Type 2B most common in throwers
Pathologic Conditions

- SLAP tears
 - “Peel back mechanism”
Pathologic Conditions

- SLAP tears
 - Vague pain in late cocking
 - Physical exam has poor predictive value
 - MRI/Arthrogram and arthroscopy are gold standard
Pathologic Conditions

- **SLAP tears**
 - **Treatment**
 - Trial of NSAIDs / Rest
 - Cuff/scapular stabilizers
 - Surgical Repair if symptoms persist
 - Outcomes good
 - ~75-87% return to preinjury activity
Pathologic Conditions

- Bennett’s lesion
 - Bony overgrowth on posteroinferior glenoid
 - Insertion of posterior inferior glenohumeral ligament
 - Repetitive traction during throwing

Meister AJSM 1999
Pathologic Conditions

- Bennett’s lesion
 - Posterior pain during release
 - Most do not develop symptoms
 - Treated with posterior capsulotomy and burring down

Meister AJSM 1999
Conclusions

- Throwing places enormous stress on the shoulder

- There are adaptive changes to the stress that may lead to pathologic processes

- It is important to understand the biomechanics of throwing to diagnose, treat, and ensure return to play

- Surgery should be reserved to players who have failed conservative treatment
Thank You