Elbow Pain in the Throwing Athlete

Kevin W. Farmer, MD
Assistant Professor
Dept. of Orthopaedics
University of FL

Team Physician
Florida Gators
Disclosure

In Compliance with ACCME guidelines, I hereby declare:

I do not have financial or other relationships with the manufacture(s) of any commercial services discussed in this educational activity.

Kevin W. Farmer, MD
Assistant Professor
Dept. of Orthopaedics
University of FL
Outline

- Anatomy/Functional Anatomy
- Throwing Motion
- Common Pathologic Conditions
- Work-up
- Treatment/Outcomes
Elbow Stability

- 1° Stabilizers
 - Ulnohumeral Articulation
 - 50% Elbow stability
 - 25% of pitchers s/p olecranon debridement require UCL reconstruction
 - Strain in UCL increases with >3mm posteromedial olecranon resection
 - UCL
 - Valgus Stress
 - LUCL
 - Varus Stress
Elbow Stability

- 2° Valgus Stabilizers
 - Radiocapitellar Articulation
 - FCU
 - 1° dynamic stabilizer
 - FDS
 - 2° dynamic stabilizer
Overhead Throwing

- Throwing motion is similar across sports
 - Baseball pitch, tennis serve, javelin throw, football pass, volleyball spike
- Rapid forceful extension of the elbow
- Valgus stress and pronation of the supinated forearm
Effects of Throwing on Elbow

- Angular velocity reaches 3,000°/sec as elbow extends from 110°-20° flexion
- 64N/m valgus torque at elbow
 - UCL tensile strength: 33 N/m
- 500 N compressive force on radiocapitellar joint
- Majority of injuries secondary to repetitive overload rather than acute trauma
Stages of Overhead Throwing

- Baseball Pitch
 - Best Studied
 - Divided into 5 stages

Diagram illustrating the five stages of a baseball pitch:

1. Start
2. Hands apart
3. Foot down
4. Maximal external rotation
5. Ball release
6. Deceleration
7. Follow-through
8. Finish
Stage IV: Acceleration

- Rapid acceleration of the UE
- Large forward-directed force on the extremity
 - Results:
 - IR & adduction humerus
 - Rapid elbow extension
 - Large valgus stress across elbow

- Most injuries occur in this phase; large stress/load across medial elbow structures
Stage V: Deceleration/Follow Through

- Dissipation of all kinetic energy
- Ends with full extension elbow
 - Shear stress in posterior compartment
- Rapid forceful decel of the UE
 - Rate of 500,000°/sec
Biomechanics of Throwing

- Net effect:
 - Tensile Stress - Medially
 - Shear Stress - Posteriorly
 - Compression - Laterally

- Together → Valgus Extension Overload Syndrome
Differential Diagnosis

Medial
- UCL
- Ulnar neuritis
- Medial epicondylitis
- Flexor pronator tendinosis/rupture

Posterior
- Olecranon osteophytes
- Loose bodies
- Olecranon stress fractures

Lateral
- OCD of the capitellum
- Radiocapitellar plica
History

- **Acuity**
 - Acute vs Chronic

- **Age**
 - Skeletal Maturity

- **Location of Pain**
 - Elbow is geographic
History

• Preceeding Events
 – changes in training regimen
 – number pitches/events

• Accuracy, velocity, stamina, strength

• Phase of throwing

• Associated Neurovascular Complaints
 – Paresthesia
 – Hand clumsiness
 – Cold intolerance
Physical Examination

• Inspection
 - Resting position
 - Effusion- elbow flexed 70° - 80°
 - Carrying angle
 - May be larger (adaptive not necc pathologic)
 - Professional throwers (valgus angles > 15 °)
 - Ecchymosis
Physical Examination

• ROM

 – AROM/PROM
 – Normal: F/E 0\(^{-140^\circ}\) P/S 80-90\(^\circ\)
 – Crepitus, pain, mechanical sx
 (chondral lesion/loose body)

 – Endpoints
 – Hard in extension - (osteophytes)

 – Flexion contracture
 – May or May not be pathologic
 (50% professional pitchers + flex contracture)
Physical Examination

• Palpation
 - Geographic- tender over pathology
 - Bony landmarks
 - Fx, Stress Fx, Insertional tendinitis
 - Soft tissues
 - Biceps/Triceps, Extensor Mass, Flexor-Pronator Mass
 • Be alert to possibility deeper pathology/instability
 - Neurovascular structures
 - Ulnar Nerve
 - Tinel's
 - Subluxation
Physical Examination

• Strength
 – Compare to unaffected extremity

• Stability
 – Medial Instability
 – Valgus stress test
 – Milking maneuver
 – Lateral Instability
 – Uncommon in throwers
 – Valgus Extension Overload Test
 – Posterior medial osteophytes
Imaging

- **Plain Radiographs**
 - AP, Lateral, 2 Oblique Views
 - Osteophytes, calcifications (UCL), OCD, loose bodies
 - Stress Radiographs
 - Fallen out favor

- **CT Scan/Bone Scan:**
 - Olecranon stress fx

- **MRI**
 - +/- Arthrogram
Differential Diagnosis

Medial
- UCL
- Ulnar neuritis
- Medial epicondylitis
- Flexor pronator tendinitis/rupture

Posterior
- Olecranon osteophytes
- Loose bodies
- Olecranon stress fractures

Lateral
- OCD of the capitellum
Differential Diagnosis

- **Medial**
 - UCL
 - Ulnar neuritis
 - Medial epicondylitis/apophysitis
 - Flexor pronator tendinosis/rupture
UCL Injuries

• Valgus Stability of Elbow
 – 1° Stabilizer
 – Ulnar collateral ligament
 – 2°
 – Radio-capitellar joint
 – Flexor-Pronator Mass
 – FCU>FDS>PT

• Mid-range of motion from 20-120°
 – Unlocked ulno-humeral joint
Ulnar Collateral Ligament

- **3 Bundles**
 - **Anterior Bundle**
 - Anterior Oblique Ligament
 - Inf Med Epi- Sublime Tub
 - **Posterior Bundle**
 - Posterior Oblique Ligament
 - Inf Med Epi- Sigmoid Notch/post coronoid
 - **Transverse Ligament**
 - Olecranon-Coronoid
Ulnar Collateral Ligament

- 3 Bundles
 - Anterior Bundle
 - 2 Bands
 - Anterior Band
 - Posterior Band
Ulnar Collateral Ligament

- **3 Bundles**
 - **Anterior Bundle**
 - 2 Bands
 - Anterior Band
 - 1° stabilizer @ lower flexion angles (<90)
 - Posterior Band
 - 1° stabilizer @ higher flexion angles (>90)
UCL Injury: Pathophysiology

- Throwing Motion Generates:
 - Large Valgus & Extension Forces
 - Tensile Stress along Medial Structures
 - Repetitive Tensile Stresses- Leads to microtrauma to UCL
 - May lead to UCL attenuation or failure
UCL Injury: Presentation

• Soreness along inner elbow during and after throwing

• Occasionally report episode of giving way or sudden severe pain ± popping sensation

• Pain
 – acceleration
 – ball release
 – point of impact in hitting the ball
UCL Injury: Presentation

- Loss of pitch velocity/control
- +/- Ulnar nerve symptoms
- Catching or locking of the elbow if loose bodies are present
UCL Injury: Physical Exam

- Point tenderness 2 cm distal to medial epicondyle
- Laxity/Pain with valgus stress
- Absence of pain with resisted wrist flexion (epicondylitis)
- Ecchymosis in acute injury
UCL Injury: Physical Exam

- **Valgus Stress Test**
 - Classically described with elbow flexed 20-30°
 - Moving Valgus Stress Test
 - supine, with humerus maximally ER
 - Valgus stress throughout flexion/extension
 - 100% sensitive/75% specific
UCL Injury: Physical Exam

- Milking Maneuver
 - Shoulder abd 90°, Elbow flex 90°
 - Examiner grabs thumb; applies valgus stress
 - Valgus stress on elbow flexed >90°
 - Pain is positive finding
 - Often at sublime tubercle
UCL Injury: Imaging

- **X-rays**
 - Calcification
 - Avulsion

- **Stress X-rays**
 - Used less frequently
 - > 3mm opening positive
 - Increased opening common in throwers

- **MRI**
 - +/- Arthrogram is the study of choice
UCL Injury: Treatment

- **Non-Operative Rx**
 - **Indications**
 - Non-throwing athlete
 - Non-throwing arm
 - Low demand patient
 - Partial Tears
 - **Rehab**
 - 2-6 wks “Active Rest”
 - Brace (no valgus stress)
 - Rest, Ice, NSAIDs, Motion
 - Functional Exercises/Plyometrics
 - Flexor pronator strengthening
 - Interval throwing program
UCL Injury: Treatment

- **Operative Rx**
 - Indications
 - Acute rupture
 - Complete tear thrower
 - Partial tears that failed Rehab
 - Symptomatic tears in non-thrower, that failed Rehab
 - Technique
 - Repair vs Reconstruction?
UCL Injury: Treatment

- **UCL Repair:**
 - Historically was the mainstay of Rx
 - Several comparative studies demonstrated superior results w/ reconstruction
 - Currently Limited Indications for Repair:
 - Acute proximal avulsions
 - Pediatric population (Savoie)
 - Good quality ligament

![Anatomic origin illustration](image)
UCL Injury: Treatment

• UCL Reconstruction:
 - Rx of Choice:
 - Reconstruction of the Anterior Bundle of the UCL w/ free tendon graft
 - Multiple Grafts Choices
 - Palmaris Longus
 - Contra-lateral?
 - Hamstring
 - Plantaris
 - 4th Toe Extensor
 - Allograft
UCL Injury: Treatment

- **UCL Reconstruction: Historical Perspective**
 - 1986, Jobe et al. 1st to report results of reconstructive technique
 - "Tommy John" Procedure
 - Prior to this, UCL tear in a throwing athlete was a career ending injury
UCL Injury: Treatment

- Multiple Reconstruction Techniques
 - Classic “Tommy John”
 - Modified “Tommy John”
 - Docking Procedure
 - Interference Screws
 - Hybrid Reconstruction
 - Bone Anchor Reconstruction
UCL Injury: Treatment

- UCL Reconstruction: Classic “Tommy John”
 - Extensive medial exposure
 - Transected and reflected flexor pronator mass
 - Free tendon graft recon, w/ bone tunnels through the posterior humeral cortex
 - Submuscular ulnar nerve transposition

- Excellent exposure, at expense significant morbidity associated with nerve transposition and muscle detachment
UCL Injury: Treatment

- UCL Reconstruction: Modifications
 - Modified “Tommy John”
 - Muscle-splitting approach vs. elevation of flexor-pronator mass without detachment
 - Ulnar nerve transposition uncommon
UCL Injury: Treatment

- **UCL Reconstruction: Modifications**
 - Modified “Tommy John”
 - Bone tunnel in Ulna
 - Anteriorly directed converging tunnels in medial epicondyle
UCL Injury: Treatment

- UCL Reconstruction: Modifications
 - Docking Procedure
 - Two Drill Holes in Ulna
 - One drill hole in Humerus (blind end humeral tunnel)
 - Less bone tunnels
UCL Injury: Treatment

- **UCL Reconstruction: Results**
 - Systematic Review (AJSM 2008 Vitale et al.)
 - 8 (Level III) retro, cohort studies
 - Athletes underwent recon w/ min 1 yr f/u
 - Muscle splitting > flexor takedown
 - 87% vs. 70% excellent results
 - 7% vs. 23% complications
 - 6% vs 20% ulnar neuropathy
 - Docking procedure > figure-8
 - 90-95% versus 76% excellent outcomes
 - 8% vs. 4% ulnar neuropathy

No transposition > transposition
89% versus 75% excellent outcomes
6% versus 14% complications
2 fold decrease in neuropathy
UCL Injury: Treatment

- UCL Reconstruction: Results
Flexor-Pronator Tendinosis/ Medial Epicondylitis

- Common flexor-pronator tendon at medial epicondyle
- Dynamic stabilizers to valgus stress in throwing elbow
- Wide spectrum of injuries
 - Mild overuse to acute tears
Flexor-Pronator Tendinosis/
Medial Epicondylitis

- **Presentation**
 - Insidious onset of medial elbow pain
 - Late cocking/acceleration

- **Exam**
 - TTP medial epi, over muscle distal/anterior
 - Pain with wrist flexion/pronation
 - No pain w/ valgus stress

Concomitant valgus instability, may be underlying cause of sx & must be addressed at time of Rx
Flexor-Pronator Tendinosis/Medial Epicondylitis

- Treatment
 - Non-Op
 - Main stay of Rx (90% success)
 - Phase I - Rest, NSAIDS, +/- Injection
 - Phase II - Stretching, pain free strengthening, counterforce brace
 - Phase III - Interval Throwing program, mechanics
 - Cortisone? PRP?
 - Operative Debridement/Repair
 - Refractory sx, muscle tears
 - 86-97% Good/Excellent Results in athletes (Jobe 1991, Morrey 1995)
Ulnar Neuropathy

- **Ulnar Nerve Sx Common**
 - 40% of athletes w/ valgus instability develop ulnar neuritis
 - 60% of throwers w/ medial epicondylitis have ulnar nerve sx

- **Susceptible to injury**
 - Tight path it follows
 - Subcutaneous location
 - Considerable excursion required
Ulnar Neuropathy

- Ulnar Nerve Irritation:
 - Traction-
 - Valgus Stress
 - Compression
 - Adhesions
 - Osteophytes
 - Muscle hypertrophy
 - Inflamed UCL (floor cubital tunnel)
 - Friction
 - Subluxation
Exacerbation of Ulnar Nerve Compression w/ Throwing

- Elbow flexion, wrist extension and shoulder abduction → 6x increase in intraneural pressure compared to resting level

- Made worse by chronic changes of valgus overload

- Prolonged and repeated pressure elevations lead to nerve fibrosis and ischemia
Evaluation of Ulnar Neuropathy

- Elbow pain w/ radiation down medial aspect of forearm into hand
- Clumsiness, heaviness, paresthesias, loss control
- Painful snapping w/ recurrent subluxations
- + Tinel's, Flexion Test

** R/O Concomitant UCL Instability/ Flexor Tendinosis
Treatment of Isolated Ulnar Neuropathy

<table>
<thead>
<tr>
<th>Nonoperative</th>
<th>Operative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest, ice, NSAIDs</td>
<td>Decompression*</td>
</tr>
<tr>
<td>Brief immobilization/Night splints</td>
<td>Medial epicondylectomy*</td>
</tr>
<tr>
<td>Injections not recommended</td>
<td>Subcutaneous vs Submuscular Transposition</td>
</tr>
<tr>
<td>85% Success Rate</td>
<td>* Poor results in throwers</td>
</tr>
</tbody>
</table>
Operative Management
Ulnar Neuropathy

- **Submuscular Transposition**
 - Protects from trauma (Contact Athletes)
 - Longer rehab secondary to healing of flexor-pronator origin

- **Subcutaneous Transposition**
 - Minimizes disruption of flexor-pronator musculature (Throwers)
 - More vulnerable to direct trauma

- Improvement depends on stage of symptoms
- 4-6 months to return to full activity
Isolated Ulnar Neuropathy: Op Results

- Del Pizzo
 - 60% return to play with submuscular
- Rettig and Ebben
 - 95% return to play after subcutaneous transfer
- Andrews
 - 7 of 8 pro players returned after subcutaneous transposition

Current Recs: subcut ulnar nerve transposition in throwers
Differential Diagnosis

<table>
<thead>
<tr>
<th>Medial</th>
<th>Posterior</th>
<th>Lateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCL</td>
<td>Olecranon osteophytes</td>
<td>OCD of the capitellum</td>
</tr>
<tr>
<td>Ulnar neuritis</td>
<td>Loose bodies</td>
<td></td>
</tr>
<tr>
<td>Medial epicondylitis</td>
<td>Olecranon stress fractures</td>
<td></td>
</tr>
<tr>
<td>Flexor pronator tendinosis/rupture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Differential Diagnosis

Posterior

Olecranon osteophytes

Loose bodies

Olecranon stress fractures
Differential Diagnosis

Posterior

Olecranon osteophytes

Loose bodies

Olecranon stress fractures

Posterior Impingement
Posterior Impingement

- **Cause:** Valgus Extension Overload
 - Repetitive combo of hyperextension, valgus & supination
 - Causes abutment of medial olecranon against fossa

- **Result:** Posterior Impingement
 - Synovitis, osteophyte and/or loose body formation in the posteromedial elbow of throwers
Posterior Impingement

- **Evaluation**
 - Posterior pain, effusion, locking, crepitus, loss of extension
 - TTP posteromedially, pain forced extension
 - Xrays - osteophytes/loose bodies
 - MRI - most sensitive test
 - Must r/o/address medial instability

- **Initial Rx: Conservative**
 - RICE
 - NSAIDS/ Cortisone
 - PT, Interval Throwing
Posterior Impingement

Operative Treatment

- Arthroscopic Debridement
 - Debridement of olecranon osteophytes
 - Removal loose bodies
 - Chondroplasty

- Must address concomitant instability if present

- Avoid excessive osteophyte removal; overzealous removal may expose UCL to increased stresses
Results

• Andrews et al. 1995
 - 56 pro players
 - posterior osteophyte excision +/- UCL or ulnar nerve transposition
 - 70% returned to play at 24 months
 - 41% required re operation for repeat debridement

• Reddy et al. 2000
 - 187 patients with elbow arthroscopy
 - 104 for posterior impingement
 - 92% good to excellent results at avg 42 months
 - 85% Baseball players RTP

• Current Recs- Arthroscopic debridement +/- UCL stabilization procedure, may improve sx but caution pt, may require additional procedures
Olecranon Stress Fractures

- Repetitive microtrauma by olecranon impingement or excessive triceps tensile stress
- Posterior elbow pain
- TTP over olecranon
- MRI, CT diagnostic
Olecranon Stress Fractures

- Treatment
 - Initial treatment w/ rest
 - May require ORIF in competitive thrower w/ 6.5 or 7.3 mm cannulated screw
Differential Diagnosis

Medial
- UCL
- Ulnar neuritis
- Medial epicondylitis
- Flexor pronator tendinosis/rupture

Posterior
- Olecranon osteophytes
- Loose bodies
- Olecranon stress fractures

Lateral
- OCD of the capitellum
- Radiocapitellar plica
Differential Diagnosis

- Lateral
- OCD of the capitellum
- Radiocapitellar plica
Osteochondritis Dissecans of the Capitellum

- OCD
 - injury to subchondral bone that results in loss of structural support for cartilage

- Etiology
 - Unclear, repetitive microtrauma
Osteochondritis Dissecans of the Capitellum

- **Presentation**
 - Insidious onset, poorly localized lateral pain
 - Worse w/ activity
 - +/- mechanical sx
 - May experience loss extension

- **Imaging**
 - Xrays
 - Radiolucency lesion
 - MRI
Osteochondritis Dissecans of the Capitellum

- **Treatment**
 - Still evolving, no consensus
 - Natural hx not understood
 - Lesion progression

- **Conservative Rx**
 - Stable lesions, younger pts
 - Activity modification, Rest

- **Operative Rx (Arthroscopy)**
 - Unstable lesions, Loose bodies
 - Debridement +/- abrasion chondroplasty
 - OATS
Osteochondritis Dissecans of the Capitellum

- **Panner’s Disease**
 - Self-limited osteochondrosis of capitellum
 - Children < 10
 - Resolves with rest
Radiocapitellar plica

- Tenderness to palpation
- Pain with flexion-extension of pronated forearm
Summary

- Overhead throwing - Large valgus and extension moments
- Medial tensile, lateral compression and posterior shear
- Common pathologic mechanism for elbow conditions
- Many of the pathologic conditions in throwers are related to elbow instability
- Dx and treating elbow instability, key for successful outcomes; regardless of presenting condition